Document classification or document categorization is a problem in both library science, information science and computer science. The task is to assign a document to one or more classes or categories. This may be done "manually" (or "intellectually") or algorithmically. The intellectual classification of documents has mostly been the province of library science, while the algorithmic classification of documents is used mainly in information science and computer science. The problems are overlapping, however, and there is therefore also interdisciplinary research on document classification.
The documents to be classified may be texts, images, music, etc. Each kind of document possesses its special classification problems. When not otherwise specified, text classification is implied.
Documents may be classified according to their subjects or according to other attributes (such as document type, author, printing year etc.). In the rest of this article only subject classification is considered. There are two main philosophies of subject classification of documents: The content based approach and the request based approach.
Contents |
Content based classification is classification in which the weight given to particular subjects in a document determines the class to which the document is assigned. It is, for example, a rule in much library classification that at least 20% of the content of a book should be about the class to which the book is assigned. In automatic classification it could be the number of times given words appears in a document.
Request oriented classification (or -indexing) is classification in which the anticipated request from users is influencing how documents are being classified. The classifier ask himself: “Under which descriptors should this entity be found?” and “think of all the possible queries and decide for which ones the entity at hand is relevant” (Soergel, 1985, p. 230[1]).
Request oriented classification may be classification that is targeted towards a particular audience or user group. For example, a library or a database for feminist studies may classify/index documents different compared to a historical library. It is probably better, however, to understand request oriented classification as policy based classification: The classification is done according to some ideals and reflects the purpose of the library or database doing the classification. In this way it is not necessarily a kind of classification or indexing based on user studies. Only if empirical data about use or users are applied should request oriented classification be regarded as a user-based approach.
Sometimes a distinction is made between assigning documents to classes ("classification") versus assigning subjects to documents ("subject indexing") but as Frederick Wilfrid Lancaster has argued is this distinction not fruitful. "These terminological distinctions,” he writes, “are quite meaningless and only serve to cause confusion” (Lancaster, 2003, p. 21[2]). The view that this distinction is purely superficial is also supported by the fact that a classification system may be transformed into a thesaurus and vice versa (cf., Aitchison, 1986,[3] 2004;[4] Broughton, 2008;[5] Riesthuis & Bliedung, 1991[6]). Therefore is the act of labeling a document (say by assigning a term from a controlled vocabulary to a document) at the same time to assign that document to the class of documents indexed by that term (all documents indexed or classified as X belong to the same class of documents).
Automatic document classification tasks can be divided into two sorts: supervised document classification where some external mechanism (such as human feedback) provides information on the correct classification for documents, and unsupervised document classification (also known as document clustering), where the classification must be done entirely without reference to external information. There is also a semi-supervised document classification, where parts of the documents are labeled by the external mechanism.
Automatic document classification techniques include:
Classification techniques have been applied to
|
Publications:
References:
Data sets: